

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 261 (2007) 6-11

www.elsevier.com/locate/molcata

Selective reduction of NO₂ with acetaldehyde over Co/Al₂O₃ in lean conditions

Atsushi Takahashi*, Masaaki Haneda, Tadahiro Fujitani, Hideaki Hamada

Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Received 19 December 2005; received in revised form 6 March 2006; accepted 25 July 2006 Available online 1 September 2006

Abstract

Selective reduction of NO₂ with acetaldehyde (CH₃CHO) was investigated over alumina-supported catalysts. Among the catalysts tested, Co/Al₂O₃ showed the highest activity with a maximum performance at 2 wt.% Co loading. The comparison of the activity of Co/Al₂O₃ and Al₂O₃ for several unit reactions suggested that one of the roles of supported Co is to suppress the combustion of CH₃CHO by O₂, resulting in an enhancement of the selective reaction of CH₃CHO with NO₂. The observation of the adsorbed species by in situ FT-IR spectroscopy showed that enolate species acts as the intermediate for NO₂ reduction by CH₃CHO and that another role of Co is to promote the production of the enolate species.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Acetaldehyde; Co/Al2O3; NO2 selective reduction

1. Introduction

Selective catalytic reduction of nitrogen oxide (NOx) with hydrocarbon (HC-SCR) is one of the most desirable technologies for abatement of NOx in diesel and lean burn engine exhausts. While a lot of investigations have focused on zeolitebased catalysts since the report on Cu–ZSM-5 catalyst by Held et al. [1] and Iwamoto et al. [2], metal oxide-based catalysts represented by alumina have also drawn considerable attention [3–5].

The selective reduction of NO with hydrocarbon is a very complex reaction comprised of several parallel and/or consecutive reaction steps. Although there is still disagreement in the literature regarding the reaction pathway, this reaction is believed to be a three-step process consisting of: (I) NO oxidation to NO₂, (II) oxidative activation of hydrocarbon, and (III) reaction of NO₂ and the activated hydrocarbon leading to the formation of N₂ via N-containing organic intermediates. In this regard, there have been a number of studies to promote the NO

1381-1169/\$ – see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2006.07.065

reduction activity by combining catalytic active species accelerating certain reaction steps mentioned above. For example, Hamada et al. [6] investigated Co-supported Al₂O₃ catalyst for the selective reduction of NO with propene and proposed a mechanism that the supported cobalt promotes NO oxidation to NO₂, which then reacts with propene on Al₂O₃ to give N₂. Misono et al. [7] reported that the physical mixing of Mn₂O₃ or CeO₂ enhanced considerably the activity of Ce–ZSM-5 for the selective reduction of NO with propene and that the role of Mn₂O₃ or CeO₂ is to promote NO oxidation to NO₂ without accelerating propene combustion.

Recently, non-thermal plasma assisted catalysis is attracting attention as a promising strategy for NOx abatement in diesel exhaust [8]. In this reaction system, the exhaust gas is first treated by a plasma reactor before entering the catalytic converter. In the plasma reactor, NO is oxidized to NO₂ and the hydrocarbons to oxygenates. NO₂ and the oxygenates thus formed then react over the catalyst to produce N₂, CO₂ and H₂O. Since the formation rate of NO₂ and oxygenates can be controlled by adjusting the power for plasma generation, the development of effective catalysts for the reduction of NO₂ with oxygenate under oxygenrich conditions is highly desirable from a practical point of view.

^{*} Corresponding author. Tel.: +81 29 861 9398; fax: +81 29 861 4647. *E-mail address:* at-takahashi@aist.go.jp (A. Takahashi).

Kung and co-workers [9] investigated the reaction of NO₂ with CH₃CHO, and found that anatase TiO₂ shows good activity for this reaction. Yoon et al. [10] investigated the activity of various catalysts in the system of plasma-assisted NOx reduction, and reported that Al₂O₃ and basic zeolites such as NaY are effective catalysts. Miessner et al. [11] showed that Al₂O₃ and ZrO₂ act as effective catalysts in plasma-assisted NOx reduction. Tran et al. [12] also reported the activity of In/Al₂O₃, which strongly depends on the type of hydrocarbon used and reaction temperature. However, there have been no comprehensive studies aiming at the development of effective catalyst for plasma-assisted NOx reduction.

In the present study, we have investigated the activity of various alumina-supported catalysts for the selective reduction of NO₂ with CH₃CHO, which are major oxidation products by plasma reaction [13,14], and found that Co/Al₂O₃ shows the highest activity for this reaction. The role of supported Co and the reaction mechanism are discussed based on the catalytic activities for several unit reactions and the behavior of the adsorbed species observed by in situ FT-IR spectroscopy.

2. Experimental

2.1. Catalyst preparation

Alumina supplied from Mizusawa Chemical Industries (Neobead GB-45, $185 \text{ cm}^2 \text{ g}^{-1}$) was used as the support for catalyst preparation. Alumina-supported catalysts (M/Al₂O₃: M=Mn, Co, Ni, In, Sn, Ga, Ag, Rh) were prepared by impregnation method using aqueous solutions of Mn(NO₃)₂, (CH₃COO)₂Co, Ni(NO₃)₂, In(NO₃)₃, SnCl₄, Ga(NO₃)₃, AgNO₃ and Rh(NO₃)₃, respectively, followed by drying at 110 °C and calcination in air at 600 °C for 5 h. The loading of metals was set at 1 wt.% except for Co, in which case the loading was changed from 0.5 to 10 wt.%.

2.2. Catalytic activity measurements

The catalytic activity was measured using a fixed bed flow reactor. A 40 mg of a catalyst grinded to powder was placed in the quartz tube. The reaction gas mixture consisting of 500 ppm NO₂, 1500 ppm CH₃CHO, 10% O₂, 6% H₂O and He balance

Table 1 Catalytic activity of Metal/Al $_2O_3$ for selective reduction of NO $_2$ with CH $_3$ CHO

was passed through the reactor at a gas flow rate of $90 \text{ cm}^3 \text{ min}^{-1}$ (W/F = 0.027 g s cm⁻³). Steady-state catalytic activity at each reaction temperature was measured as the reaction temperature was lowered from 600 to 200 °C with a step of 50 °C.

The effluent gas was analyzed by gas chromatography (Shimadzu, GC-8A TCD detector) with a Molecular Sieve 5A column to separate N₂ and CO and a Porapak Q column to separate N₂O and CO₂. The catalytic activity was evaluated in terms of NO₂ conversion to N₂ and that of CH₃CHO to COx (CO + CO₂). The formation of N₂O was found negligible in the present study. The concentration of NOx (NO + NO₂) was continuously monitored with a chemiluminescence NOx analyzer (Shimadzu, NOA-7000) to check the stability of catalytic activity.

2.3. FT-IR measurements

Diffuse reflectance FT-IR spectra were recorded with a Nicolet Nexus 670 FT-IR spectrometer, accumulating 64 scans at a resolution of 4 cm^{-1} . Prior to each measurement, 25 mg of a catalyst placed in the diffuse reflectance high temperature cell (Spectra Tech) fitted with CaF₂ windows was activated in situ by heating in flowing 10% O₂/He at 600 °C, followed by cooling to the desired temperature (300–400 °C). The background spectrum of the clean surface was measured for spectra correction. Various gas mixtures containing 0 or 500 ppm NO₂, 1500 ppm CH₃CHO, 10% O₂ and He as the balance gas were fed to the catalyst at a flow rate of 30 cm³ min⁻¹.

3. Results and discussion

3.1. Activity of alumina-supported catalysts

Table 1 summarizes the catalytic activity of M/Al_2O_3 (M = Mn, Co, Ni, In, Sn, Ga, Ag, Rh) for the selective reduction of NO₂ with CH₃CHO. Al₂O₃ was found to catalyze effectively NO₂ reduction at temperatures above 300 °C with a maximum NO₂ conversion of 46% at 550 °C. It can be seen that Co, Ni, In, Sn, Ga and Ag/Al₂O₃ catalysts showed higher activity than Al₂O₃ with lower effective temperature range. On the other hand, the addition of Mn and Rh caused a significant decrease of the activity of Al₂O₃. The low reduction activity of Mn/Al₂O₃

Catalysts	NO ₂ to N ₂ conversion (%), CH ₃ CHO to COx conversion (%)								
	200°C	250 °C	300 °C	350 °C	400 °C	450 °C	500 °C	550 °C	600 °C
Al ₂ O ₃	0(0)	1(4)	13(15)	21 (33)	27 (59)	42(83)	43 (91)	46(99)	29 (96)
Mn/Al ₂ O ₃	0(6)	0(18)	0(28)	0(45)	0(77)	9(95)	11 (97)	10(99)	7 (99)
Co/Al ₂ O ₃	0(0)	1(4)	11(13)	37 (36)	55(62)	73 (90)	72(98)	58(98)	29(98)
Ni/Al ₂ O ₃	0(1)	1(3)	8(11)	25 (26)	40(54)	51(75)	55 (89)	50(96)	25 (100)
In/Al ₂ O ₃	1(0)	1(3)	10(10)	28(27)	49(63)	55 (86)	56(97)	51 (99)	26(100)
Sn/Al ₂ O ₃	1(1)	1(5)	16(14)	29(31)	33 (58)	47 (82)	53 (92)	53 (96)	27 (99)
Ga/Al ₂ O ₃	1(1)	2(4)	15(13)	28(29)	34(58)	46(78)	51 (88)	58(95)	32 (97)
Ag/Al ₂ O ₃	1(2)	1(6)	5(13)	15(29)	20(56)	32(85)	59 (96)	61 (99)	33 (100)
Rh/Al ₂ O ₃	0(3)	1(11)	3 (27)	12 (86)	3 (97)	1 (98)	0(98)	0(98)	0(98)

Loading of metal: 1 wt.%; reaction conditions: 500 ppm NO₂, 10% O₂, 1500 ppm CH₃CHO, 6% H₂O, He balance and W/F = 0.027 g s cm⁻³.

and Rh/Al₂O₃ can be ascribed to their high activity for CH₃CHO combustion, as can be seen from the CH₃CHO conversions. Among the additives tested here, Co was the best one, since the maximum NO₂ conversion reaches as high as 73% at 450 °C. Consequently, the rest of this paper deals mainly with Co/Al₂O₃.

3.2. Effect of Co loading on the catalytic activity of Co/Al₂O₃

Fig. 1 shows the effect of Co loading on the catalytic activity of Co/Al₂O₃ for NO₂ reduction with CH₃CHO. NO₂ conversion over Co/Al₂O₃ increased with increasing Co loading and reached a maximum (75%) at 2 wt.% Co loading. However, further increase in the Co loading more than 5 wt.% decreased the NO₂ reduction activity. In contrast, the conversion of CH₃CHO to COx monotonously increased with Co loading. Accordingly, the decrease of NO₂ reduction activity at high Co loading can be explained by predominant CH₃CHO combustion. It was also found that the effective temperature window showing high

Fig. 1. Effect of Co loading on the catalytic activity of Co/Al₂O₃ for the selective reduction of NO₂ with CH₃CHO. Reaction conditions: 500 ppm NO₂, 10% O₂, 1500 ppm CH₃CHO, 6% H₂O, He balance and W/F = 0.027 g s cm⁻³. Co loading: 0 wt.% (\triangle), 0.5 wt.% (\bigcirc), 1 wt.% (\triangleright), 2 wt.% (\triangle), 3 wt.% (\Box), 5 wt.% (\Diamond) and 10 wt.% (∇).

Fig. 2. (a) NO₂ conversion and (b) CH₃CHO conversion for the reaction systems of NO₂ + CH₃CHO (\Box , \blacksquare), CH₃CHO + O₂ (\Diamond , \blacklozenge) and NO₂ + CH₃CHO + O₂ (\triangle , \blacklozenge). Open symbols indicated the results obtained on 2 wt.% Co/Al₂O₃ and the solid symbol on Al₂O₃. Reaction conditions: 0 or 500 ppm NO₂, 0 or 10% O₂, 0 or 1500 ppm CH₃CHO, 6% H₂O, He balance and W/F = 0.027 g s cm⁻³.

NO₂ conversion shifts to lower temperature with increasing Co loading.

3.3. Comparison of $NO_2 + CH_3CHO + O_2$, $NO_2 + CH_3CHO$ and $CH_3CHO + O_2$ reactions

In order to get information on the role of supported cobalt and the reaction mechanism, Al_2O_3 and 2 wt.% Co/ Al_2O_3 were examined for catalytic activity for the three reaction systems ($NO_2 + CH_3CHO + O_2$, $NO_2 + CH_3CHO$ and $CH_3CHO + O_2$). Fig. 2(a) shows the NO_2 conversion on Al_2O_3 and 2 wt.% Co/ Al_2O_3 for the reaction systems of $NO_2 + CH_3CHO + O_2$ and $NO_2 + CH_3CHO$. Obviously, no NO_2 reduction took place in the reaction system of $NO_2 + CH_3CHO$ on both Al_2O_3 and 2 wt.% Co/ Al_2O_3 . Furthermore, no NOx reduction was observed in an equal mixture of NO and NO_2 and absence of oxygen on Co/ Al_2O_3 , suggesting that the presence of O_2 is essential for NO_2 reduction to occur. For NO reduction by hydrocarbons, O_2 is believed to act as an oxidant for NO oxidation to NO_2 and

Fig. 3. FT-IR spectra of adsorbed species in flowing CH₃CHO (1500 ppm) + O_2 (10%) on Al₂O₃ and 2 wt.% Co/Al₂O₃ at 300, 350 and 400 °C for 60 min.

oxidative hydrocarbon activation. Since NO_2 was used instead of NO in this study, O_2 is considered to contribute to the activation of CH₃CHO.

The reactivity of CH₃CHO with O₂ was then investigated. As seen in Fig. 2(b), the CH₃CHO conversion on 2 wt.% Co/Al₂O₃ is lower than that on Al₂O₃ for the reaction system of CH₃CHO + O₂. This indicates that one of the roles of Co is to suppress the combustion of CH₃CHO by O₂, which is a side reaction. The addition of NO₂ to the reaction system of CH₃CHO + O₂ slightly increased the conversion of CH₃CHO on Al₂O₃, while a great increase in the conversion was observed on 2 wt.% Co/Al₂O₃. This result strongly suggests that the presence of Co promotes the reaction of NO₂ with CH₃CHO to give N₂.

3.4. FT-IR study

To get further insight into the role of Co and reaction mechanism, we observed FT-IR spectra of adsorbed species formed on Al₂O₃ and 2 wt.% Co/Al₂O₃ under the reaction conditions of CH₃CHO + O₂ and NO₂ + CH₃CHO + O₂.

3.4.1. Surface species formed in $CH_3CHO + O_2$ reaction

Fig. 3 shows the IR spectra of the adsorbed species formed on Al₂O₃ and Co/Al₂O₃ after introducing the gas mixture of CH₃CHO + O₂ at each temperature. On Al₂O₃, the formation of formate and acetate species was confirmed at 300 °C by the absorption peaks at 1393 and 1590 cm⁻¹ (δ (CH) and ν_{as} (COO⁻) of formate[15–17]) and 1467 cm⁻¹ (ν_s (COO⁻) of acetate[15–17]), respectively. Weak absorption bands due to acetate and formate species were also observed in the C–H stretching region (2900–3000 cm⁻¹). When the temperature

Fig. 4. FT-IR spectra of adsorbed species in flowing NO₂ (500 ppm) + CH₃CHO (1500 ppm) + O₂ (10%) on Al₂O₃ and 2 wt.% Co/Al₂O₃ at 300, 350 and 400 $^{\circ}$ C for 60 min.

increased up to $400 \,^{\circ}$ C, the bands due to formate species almost completely disappeared, while those due to acetate hardly changed.

In addition to the bands due to formate and acetate described above, new IR bands at 1350, 1424 and 1612 cm⁻¹ were detected on Co/Al₂O₃ at 300–400 °C, as can be seen in Fig. 3. The intensities ratio of these peaks was constant though the absolute peak intensities changed about 30% with temperature. Yu et al. [18] observed IR peaks at 1336, 1416 and 1633 cm⁻¹ during CH₃CHO oxidation over Ag/Al₂O₃, and assigned them to enolic species(CH₂=CH–O–) on the basis of density functional theory calculation. Theoretical calculations of the vibrational frequencies for enolate (CH₂=C(CH₃)–O) adsorbed on MgO also indicated that the IR bands due to the symmetric and asymmetric stretching vibration of the C–C–O group appear at 1690 and 1426 cm⁻¹, respectively [19]. Therefore, the bands at 1350, 1424 and 1612 cm⁻¹ observed here can be assigned to the enolate species (CH₂=CH–O–).

3.4.2. Surface species formed in $NO_2 + CH_3CHO + O_2$ reaction

The IR spectra measured during the NO₂ + CH₃CHO + O₂ reaction over Al₂O₃ and Co/Al₂O₃ at each temperature are shown in Fig. 4. The IR bands assigned to formate (1376, 1393, 1590 cm⁻¹), acetate (1467 cm⁻¹) and nitrate species (1301 cm⁻¹ [17]) were observed on both Al₂O₃ and Co/Al₂O₃ at 300 °C. In addition to these bands, the peaks at 2231 and 2258 cm⁻¹ assigned to isocyanate (–NCO) species formed on two different Al³⁺ sites, coordinatively unsaturated tetrahedral and octahedral Al³⁺ [20], respectively, were observed. It should be noted that the bands assigned to enolate species (1350, 1424

Fig. 5. Change in IR spectra of adsorbed species on $2 \text{ wt.\% Co/Al}_2O_3$ after switching a gas mixture from CH₃CHO (1500 ppm)+O₂ (10%) to NO₂ (500 ppm)+O₂ (10%) at 400 °C.

and 1612 cm^{-1}) were detected on Co/Al₂O₃. Since the enolate species almost completely disappeared at temperatures above 400 °C at which NO₂ reduction proceeds (Table 1), this would be an intermediate for NO₂ reduction by CH₃CHO.

3.5. Reaction pathways of the selective reduction of NO_2 with CH_3CHO

To confirm the possibility of enolate species as an intermediate, the reactivity of enolate species toward NO2 was evaluated by transient response measurement of IR spectra. The Co/Al₂O₃ catalyst was first exposed to CH₃CHO + O₂ for 60 min to accumulate enolate species on the surface, and then the reaction gas mixture was switched to $NO_2 + O_2$. This experiment was performed at 400 °C because no formate species, which may react with NO₂, existed on the surface at 400 °C (Fig. 3). Fig. 5 shows the change in the IR spectra of adsorbed species after switching the gas mixture to $NO_2 + O_2$. It is obvious that the IR band for enolate species decreased and those for nitrate species increased with time on stream. Interestingly, the formation of -NCO species was observed in a few minutes after introducing $NO_2 + O_2$. Fig. 6 shows the time dependence of the integrated areas of IR bands due to enolate species $(1417-1428 \text{ cm}^{-1})$ and -NCO species $(2200-2290 \text{ cm}^{-1})$. Relatively good correlation between the consumption of enolate species and the formation of -NCO species was observed, indicating that the enolate species can react with NO2 to produce -NCO species. Therefore, the enolate species would be an intermediate for NO₂ reduction by CH₃CHO.

A hypothetical reaction pathway of NO₂ reduction by CH₃CHO is illustrated in Scheme 1. In the first step, CH₃CHO

Fig. 6. Time dependence of integrated areas of IR bands due to enolate species $(1417-1428 \text{ cm}^{-1})$ () and –NCO species $(2200-2290 \text{ cm}^{-1})$ () on 2 wt.% Co/Al₂O₃ after switching a gas mixture from CH₃CHO (1500 ppm) + O₂ (10%) to NO₂ (500 ppm) + O₂ (10%) at 400 °C.

reacts with O2 to form enolate species. This step would be effectively catalyzed by cobalt sites because the formation of enolate species took place not on Al₂O₃ but on Co/Al₂O₃ (Figs. 3 and 4). Some papers reported that the surface enolate species from carbonyl compound such as aldehyde and ketone were formed by the α -hydrogen abstraction of the carbonyl compound, which was proceeded by O^{2-} ions adjacent to cation sites in the cation-anion couple site [21-23]. Ulla et al. showed that Co²⁺ in CoO-MgO solid solution plays a significant role in the formation of O^{2-} species [24]. Co/Al₂O₃ catalyst is known to contain Co²⁺ incorporated in aluminium oxide lattice in CoAl₂O₄-like structure [25]. We consider that the O^{2-} ion, which is produced on the sites adjacent to Co²⁺ sites of Co/Al₂O₃ in the presence of oxygen, abstracts α -hydrogen of acetaldehyde, resulting in the formation of surface enolate. It was reported for hydrocarbon oxidation on transition metal-oxide catalysts that partial oxidation of hydrocarbon effectively occurs on the oxide surface where enolate anion is formed [26]. This is in agreement with the result that the conversion of CH₃CHO to COx on Co/Al₂O₃ was lower than that on Al_2O_3 during $CH_3CHO + O_2$ reaction (Fig. 2). In the second step, the enolate species thus formed reacts with NO₂ to give -NCO species (Fig. 5), which is eventually converted to N₂. It is known that the nitrosation of enolate by nitrosonium ion (NO⁺) easily occurs since the enolate is nucleophilic and easily reacts with electrophilic species. It is predicted by ab initio calculation that the nitorosoaldehyde, which is a nitrosation product of CH3CHO via enolate species, easily isomerizes to the glyoxal monoxime, which is an oxime species [27]. Obuchi et.al. proposed that -NCO species is formed from organo-nitroso compound via oxime species formation [28].

Scheme 1. Proposed reaction pathway for the selective reduction of NO_2 with CH_3CHO on Co/Al_2O_3 .

Some researchers also reported the transformation of the oxime species to –NCO species [29,30]. Therefore, the possible pathway to –NCO species seems to consist of nitrosation of enolate, isomerization of nitroso species, and transformation of oxime species. In Fig. 5, there is a lag time of about 2 min before NCO band starts to appear, indicating that the induction period is needed for the appearance of the NCO band in the reaction steps from enolate to NCO species. The –NCO species thus formed are rapidly hydrolyzed to NH compounds by reacting with water in the stream and/or on the surface, and then the NH compounds react with NOx species to produce N₂ [29–32]. Because no water was supplied in the FT-IR measurements, the hydrolysis reaction of NCO did not occur and consequently NCO band was still significant while enolate bands have all but disappeared (Fig. 5).

4. Conclusions

Co/Al₂O₃ showed the highest activity for the selective reduction of NO₂ with CH₃CHO of the alumina-supported catalysts tested. The optimum Co loading of Co/Al₂O₃ was 2 wt.%. The comparison of the activity of Co/Al₂O₃ and Al₂O₃ for several unit reactions suggested that one of the roles of supported Co is to suppress the combustion of CH₃CHO by O₂. The observation of the adsorbed species by in situ FT-IR spectroscopy suggested that another role of Co is to promote the production of the enolate species, which is the reaction intermediate leading to N₂ formation.

References

- [1] W. Held, A. Koenig, T. Richter, L. Puppe, SAE Paper 900496, 1990.
- [2] M. Iwamoto, H. Yahiro, Y. Yu-U, S. Shundo, Y. Yu-U, N. Mizuno, Appl. Catal. 69 (1991) L15.
- [3] H. Hamada, Catal. Today 22 (1994) 21.
- [4] R. Burch, J.P. Breen, F.C. Meunier, Appl. Catal. B 39 (2002) 283.
- [5] M.C. Kung, H.H. Kung, Top. Catal. 28 (2004) 105.
- [6] H. Hamada, Y. Kintaichi, M. Inaba, M. Tabata, T. Yoshinari, H. Tsuchida, Catal. Today 29 (1996) 53.

- [7] M. Misono, Y. Hirao, C. Yokoyama, Catal. Today 38 (1997) 157.
- [8] R.G. Tonkyn, S.E. Barlow, J.W. Hoard, Appl. Catal. B 40 (2003) 207.
- [9] A.P. Kozlova, H.-Y. Law, M.C. Kung, H.H. Kung, Catal. Lett. 95 (2004) 211.
- [10] S. Yoon, A.G. Panov, R.G. Tonkyn, A.C. Ebeling, S.E. Barlow, M.L. Balmer, Catal. Today 72 (2002) 243.
- [11] H. Miessner, K.-P. Francke, R. Rudolph, Appl. Catal. B 36 (2002) 53.
- [12] D.N. Tran, C.L. Aardahl, K.G. Rappe, P.W. Park, C.L. Boyer, Appl. Catal. B 48 (2004) 155.
- [13] A.G. Panov, R.G. Tonkyn, M.L. Balmer, C.H.F. Peden, A. Malkin, J.W. Hoard, SAE Technical Paper, 2001-01-3513, 2001.
- [14] S.J. Schmieg, B.K. Cho, S.H. Oh, SAE Technical Paper, 2001-01-3565, 2001.
- [15] M. Haneda, N. Bion, M. Daturi, J. Saussey, J.-C. Lavalley, D. Duprez, H. Hamada, J. Catal. 206 (2002) 114.
- [16] F.C. Meunier, V. Zuzaniuk, J.P. Breen, M. Olsson, J.R.H. Ross, Catal. Today 59 (2000) 287.
- [17] A. Satuma, K. Shimizu, Prog. Energy Combust. Sci. 29 (2003) 71.
- [18] Y. Yu, H. He, Q. Feng, H. Gao, X. Yang, Appl. Catal. B 49 (2004) 159.
- [19] J.F. Sanz, J. Oviedo, A. Marquez, J.A. Odriozola, M. Montes, Angew. Chem. Int. Ed. 38 (1999) 506.
- [20] N. Bion, J. Saussey, C. Hedouin, T. Seguelong, M. Daturi, Phys. Chem. Chem. Phys. 3 (2001) 4811.
- [21] M.I. Zaki, M.A. Hasan, F.A. Al-Sagheer, L. Pasupulety, Langmuir 16 (2000) 430.
- [22] M.A. Hasan, M.I. Zaki, L. Pasupulety, Appl. Catal. A 243 (2003) 81.
- [23] E. Dumitriu, V. Julea, C. Chelaru, C. Catrinescu, D. Tichit, R. Durand, Appl. Catal. A 178 (1999) 145.
- [24] M.A. Ulla, R. Spretz, E. Lombardo, W. Daniel, H. Knozinger, Appl. Catal. B 29 (2001) 217.
- [25] T. Maunula, J. Ahola, H. Hamada, Appl. Catal. B 26 (2000) 173.
- [26] G. Busca, E. Finocchio, G. Ramis, G. Ricchiardi, Catal. Today 32 (1996) 133.
- [27] W.J. Bouma, L. Radom, J. Am. Chem. Soc. 101 (1979) 3487.
- [28] A. Obuchi, C. Wögerbauer, R. Köppel, A. Baiker, Appl. Catal. B 19 (1998)9.
- [29] M. Haneda, E. Joubert, J.-C. Ménézoa, D. Duprez, J. Barbier, N. Bion, M. Daturi, J. Saussey, J.-C. Lavalley, H. Hamada, J. Mol. Catal. A 175 (2001) 179.
- [30] B.I. Mosqueda-Jimenez, A. Jentys, K. Seshan, J.A. Lercher, Appl. Catal. B 46 (2003) 189.
- [31] T. Nanba, A. Obuchi, Y. Sugiura, C. Kouno, J. Uchisawa, S. Kushiyama, J. Catal. 211 (2002) 53.
- [32] V. Zuzaniuk, F.C. Meunier, J.R.H. Ross, J. Catal. 202 (2001) 340.